UNIVERSIDAD TECNOLÓGICA NACIONAL – FACULTAD REGIONAL ROSARIO

Integración IV Trabajo práctico Nº 6: Simulación de equipos con reacciones

químicas con HYSYS

1. TIPOS DE REACTORES EN HYSYS

En HYSYS hay dos clases de reactores:

- Ideales
- Generales.

1.1 REACTORES IDEALES

Este tipo de reactores se puede asociar únicamente con cualquiera de los modelos de reacción que emplean parámetros cinéticos.

1.1.1 PFR

El PFR (Plug Flow Reactor, or Tubular Reactor) generalmente consiste en un banco de tubos. Se supone flujo tapón, lo que mplica que el flujo en la dirección radial es isotropico (sin gradiente de masa o energía). Se desprecia el flujo radial.

Cuando los reactivos atraviesan la longitud del reactor PFR, son consumidos continuamente y hay una variación axial de concentración.

Para obtener la solución del PFR y los perfiles a través de la longitud del reactor, este se divide en varios subvolumenes (por defecto 20 subvolumenes en hysys).

Las EDO's del PFR son una adición reciente a los paquetes de simulación y son resueltas mediante la división del volumen en pequeños segmentos y encontrar una solución secuencial para cada volumen.

Compuesto por una serie de tubos empacados con catalizador y rodeados por una coraza con fluido térmico, la principal aplicación se presenta en la simulación de sistemas reactivos en lecho catalítico.

Se debe especificar en un PFR

- Parámetros geométricos (número de tubos, diámetro y longitud de los tubos, diámetros y esfericidad del catalizador, etc..)
- Características del fluido térmico (flujo, temperaturas de entrada y salida, etc..,) ó Temperatura de salida de sus productos ó la cantidad de calor que transfiere
- Presión de salida de los productos ó la caída de presión en su interior.
- Reacción y ley de velocidad

Dimensionamiento

- Para dimensionar un PFR se deben especificar dos de los siguientes parámetros: Volumen Total, Longitud y diámetro. El tercer valor se calcula a partir de los dos especificados.
- Especifique el número total de tubos en el PFR.
- En el campo Wall Thickness especificar el espesor del tubo.
- Especifique la fracción de espacio vacío (Void fraction) en el PFR. Si esta fracción es menor a 1 se requiere especificar los datos del catalizador. El espacio vacío del reactor es calculado a partir del volumen y de la fracción de espacio vacío.

Notas

- Si no se especifica una corriente de energía la operación se considera adiabática.
- Si selecciona el boton Ergun Equation para un PFR sin catalizador sólido, Hysys fija la caída de presión en cero.
- Active el checkbox Single Phase cuando la reacción se lleva a cabo en una sola fase. Si esta opción esta inactiva Hysys considera que la reacción se lleva a cabo en fase vaporlíquido.

1.1.2 CSTR

El CSTR calcula las condiciones de las corrientes de salida del reactor considerando que está perfectamente mezclado y que la concentración en cada punto del reactor es la misma.

Se puede emplear para reacciones en fase líquida o gaseosa, pero debe especificarse.

El modelo CSTR es un modelo algebraico estándar que ha estado en los paquetes de simulación por muchos años.

Para especificar el reactor es necesario asociarle una o varias reacciones y especificar:

- Volumen del reactor
- Nivel de líquido
- Temperatura de salida de productos ó calor transferido
- Presión de salida de los productos ó la caída de presión en su interior.
- La estequiometría de las reacciones
- Los parámetros de la velocidad de reacción de cada reacción.

Dimensionamiento

• Se debe especificar por lo menos una de las siguientes medidas: volumen, diámetro o altura (altura se especifica en tanque horizontales).

Notas

- Si se especifica el volumen cilíndrico del tanque entonces por defecto la relación Longitud / Diámetro del reactor CSTR es 3:2.
- La altura del líquido en un tanque cilíndrico vertical varia linealmente con el volumen del líquido.
- La relación entre la altura y el volumen del líquido no es lineal en tanques horizontales cilíndricos y esféricos.

1.2 REACTORES GENERALES

- Estos reactores trabajan con modelos de reacciones que no emplean parámetros cinéticos.
- Los Reactores generales son fundamentalmente un separador de fases al que se le asocia un conjunto de reacciones.
- Este tipo de reactores se puede asociar con cualquiera de los modelos de reacción presentados.

Para especificarlos es necesario asociarle una o varias reacciones e indicar:

- Volumen del recipiente
- Nivel de líquido
- Temperatura de salida de productos ó el calor que transfiere.
- Presión de salida de productos ó la caída de presión en su interior

Hysys tiene cuatro tipos de reactores no cinéticos que apareen en la paleta de objetos y que se despliegan de la opción Reactores Generales:

- Gibbs Reactor
- Equilibrium Reactor
- Conversion Reactor
- Yield Shift Reactor (de rendimiento)

1.2.1 REACTOR DE GIBBS

Los Reactores de Gibbs calculan la composición de equilibrio de la corriente de salida minimizando la energía libre de Gibbs de la corriente de entrada. Solo se requiere especificar la estequiometría.

Al minimizar la energía de Gibbs se producen la reacción más probable. Este es un proceso espontáneo en la naturaleza.

- Con el Reactor de Gibbs se obtienen resultados muy parecidos que con un Reactor de Equilibrio si se suministra información correcta pero en el reactor de Gibbs no se requiere una expresión de Keq en función de la temperatura. En este caso solo los reactivos reaccionan y no los productos (en la reacción inversa).
- Los Reactores de Gibbs no requieren de un set de reacciones.

1.2.2 REACTOR DE EQUILIBRIO

En los Reactores de Equilibrio se determina la composición de la corriente de salida especificando la estequiometría de las reacciones que ocurren y los valores de la constante de equilibrio o su dependencia de la temperatura para cada reacción

- Los Reactores de Equilibrio se pueden asociar únicamente con modelos de reacción de equilibrio.
- Hysys tiene varias reacciones de equilibrio en una lista con todos los parámetros necesarios.

1.2.3 REACTOR DE CONVERSIÓN

Este tipo de reactores se puede asociar únicamente con modelos de reacción de conversión.

Se debe especificar la estequiometría de todas las reacciones que se lleven a cabo y la conversión del componente base, el Reactor de Conversión calcula las composiciones de la corriente de salida.

1.2.4 YIELD SHIFT REACTOR (NO INCLUIDO EN HYSYS® 3.2)

Los reactores de rendimiento son para modelar reactores usando tablas de datos para desarrollar cálculos. Esta unidad puede usarse para reactores complejos que no tienen disponible un modelo o los que existen son de alto costo.

2. REACCIONES QUÍMICAS Y REACTORES EN HYSYS

Reactor en HYSYS	Tipos de Reacción
Conversion Reactor	Conversión % (x%= $C_0 + C_1 T + C_2 T^2$)
PFR	Simple Rate, Heterogeneous Catalytic, Kinetic
CSTR	Simple Rate, Heterogeneous Catalytic, Kinetic
Equilibrium Reactor	 K_{eq}=f(T); El equilibrio se basa en la estequiometría de la reacción K_{eq} = Estimada a partir de la Energía Libre de Gibbs K_{eq} = Especificada como una constante o desde una tabla de valores
Gibbs	Minimización de la Energía Libre de Gibbs de todos los componentes especificados. Hay dos opciones:1) No es requerida la estequiometría de la reacción2) La estequiometría de la reacción es dada

3. EJERCITACIÓN DE REACTORES CON HYSYS

3.1 SIMULACIÓN DE UN PFR ADIABÁTICO

El Estireno es un monómero usado en la producción de diferentes plásticos. El estireno se produce a partir de la deshidrogenación de etilbenceno:

$$C_6H_5 - C_2H_5 \iff C_6H_5 - CH = CH_2 + H_2$$

En este reactor no consideraremos el hecho de que la reacción anterior es una reacción de equilibrio y se modelará este sistema usando la expresión de Velocidad de reacción (**Kinetic Rate**):

$$r_{EB} = -4.24 \times 10^3 \frac{\text{mol EB}}{\text{L}_{\text{reactor}} \text{kPa s}} p_{EB} \exp \left[-\frac{21708 \text{ cal/mol}}{\left(1.987 \frac{\text{cal}}{\text{mol K}}\right)T} \right]$$

Notar que la velocidad de reacción tiene unidades (gr/lt-s) y que el término de la concentración es presión parcial con unidades de KPa. E= 90826 Kjoules/Kmol

Inicie un nuevo caso con los siguientes componentes:

Etilbenceno (E-Benzene)

Estireno (Styrene)

Hidrógeno (Hydrogen)

Como paquete de fluidos asóciele Peng-Robinson.

Para agregar la reacción haga clic en la pestaña "Reactions", luego en el botón "Add Rxn..)

Luego se elige tipo "Kinetic"

Reaction	ns 🔳 🗖 🖸
Conversion Equilibrium Heterogene Kinetic Simple Rate	eous Catalytic e
Ad	ld <u>R</u> eaction

Completar los formularios siguientes con los valores adecuados.

Rate Units

Stoichiometry

Delete

gmole/L-s

Parameters

reaccion kinetic

Basis

Name

🕙 Ki	inetic Reactio	n: reaccio	n kinetic			
Sto	pichiometry and R	ate Info				
	Component	Mole Wt.	Stoich Coeff	Fwd Order	Rev Order	- 1
	E-Benzene	106.166	-1.000	1.00	0.00	
	Hydrogen	2.016	1.000	0.00	1.00	
	Styrene	104.152	1.000	0.00	1.00	
×	*Add Comp*		1			
	Balance	Balance Error Reaction Heal	t (25 C) 1.2e	0.00000 +05 kJ/kgmole		
2	toichiometry		illeters			
	Delete 1	Name reacc	ion kinetic		Not Ready	
🔊 K	inetic Reactio	on: reaccio	n kinetic			
Ba	asis			1		
B	asis		Partial Pres	1		
B	ase Component		E-Benzene			
R	xn Phase	Va	pourPhase			
M	lin. Temperature		-273.1 C			
M	ax Temperature		3000 C			
	B <u>a</u> sis Units	kPa	•			

•

Not Ready

	saction	Equation Help
A E B	4240.0 90826 <empty></empty>	r = k*f(Basis) - k'*f'(Basis) k = A * exp { -E / RT } * T ^B k' = A' * exp { -E / RT } * T^B'
le <u>v</u> erse Re	eaction	Tin Kelvin
4' []	<empty></empty>	
B'	<empty></empty>	

Cerrar los formularios correspondientes a las reacciones y volver a "Simulation Basis Manager" y agregar un set de reacciones haciendo clic en "Add Set…"

Simulation Basis Manager	
Rxn Components Reactions Reaction Sets Hydrogen Add Bxn Global Rxn S E-Benzene Add Bxn Delete Rxn Delete Rxn Copy Rxn Assoc. Fluid P Add Comps Image: Compstance Image: Compstance	et View Set Add Set Delete Set Copy Set Export Set Add to FP
Components Fluid Pkgs Hypotheticals Oil Manager Reactions Component Ma	aps UserProperty
Enter EVT Environment	Return to Simulation Environment

Para atribuir la Reacción recién creada al Reaction Set, colocar el cursor en la celda <empty> bajo Active List. Despliegue la lista de las reacciones y seleccione el nombre de la Reacción (Reaccion kinetic).

El Set Type corresponde al tipo de reacción que usted ha añadido al Reaction Set. El mensaje de estado ahora exhibirá a Ready (Ver siguiente Figura).

• Reaction Set: S	et-1		
Name Set-1			
Set Info			
Set Type		Kinetic Rea	Advanced
Solver Method	Auto	Selected	
A = 1 = 1 = 1	OK		O
Active List			Uperations Attached
<pre>cempty></pre>	3**.	, compay	
View Active		View Inactive	
Make Inactive -≥		<u>≺</u> - Make Active	

Para adjuntar el Reaction Set al Fluid Package (modelo termodinámico de Peng Robinson), resaltar a Set 1 en Reaction Sets y presiona el botón Add to FP. Cuándo un Reaction Set determinado está adjuntado a un Paquete de Fluido, se vuelve disponible para las unidades de operación dentro del Flowsheet usando el Fluid Package particular.

🎍 Simulation Basis Manager	
Rxn Components Reactions Hydrogen reaccion kinetic View Rgn E-Benzene Add <u>B</u> xn Add <u>B</u> xn Styrene Delete Rxn Delete Set Copy Rxn Copy Rxn Assoc. Fluid Pkgs Add Comps Add to FP	
Components Fluid Pkgs Hypotheticals Oil Manager Reactions Component Maps UserProperty	
Enter PVT Environment Return to Simulation Environment	nent

Ahora ingrese a la ventana de simulación presionando el botón Enter Simulation Environment...Colocar el reactor PFR. Hay dos formas: Mediante la tecla F12:

🖁 UnitOps - Case (Main)	
Categories All Unit Ops Vessels Heat Transfer Equipment Rotating Equipment Solids Handling Reactors Prebuilt Columns Short Cut Columns Sub-Flowsheets Logicals Extensions	Available Unit Operations Add HYSYS-OLGA Link ▲dd Liquid-Liquid Extractor Liquid-Liquid Hydrocyclone LNG Lumper MASSBAL Sub-Flowsheet Mixer MPC Controller Parametric Unit Operation Petroleum Experts GAP PID Controller Pipe Segment PIPE SIM PIPE SIM PIPE SIM PIPE SIM Enhanced Link
C User Ops C Electrolyte Equipment C Refinery Ops C Upstream Ops	Plug Flow Reactor Pump Ratio Controller Reboiled Absorber Recycle

O la paleta de operaciones:

Conectar dos corrientes materiales ("entrada" y "salida") con las siguientes especificaciones (etilbenceno puro para la entrada)

Worksheet	Name	entrada	salida	
0 5.	Vapour	<empty></empty>	<empty></empty>	
Conditions	Temperature [C]	606.9	<empty></empty>	
Properties	Pressure [kPa]	137.8	<empty></empty>	
Composition	Molar Flow [kgmole/h]	547.9	547.9	
Composition	Mass Flow [kg/h]	<empty></empty>	<empty></empty>	
PF Specs	Std Ideal Lig Vol Flow [m3/h]	<empty></empty>	<empty></empty>	
	Molar Enthalpy [kJ/kgmole]	<empty></empty>	<empty></empty>	
	Molar Entropy [kJ/kgmole-C]	<empty></empty>	<empty></empty>	
	Heat Flow [kJ/h]	<empty></empty>	<empty></empty>	
Design React	ions Rating Worksheet Perform	ance Dynamics		

PFR-100

Set-100 - Set-	1		
Reactions Overall Details Results	Reaction Info Reaction Set Set-1 Initialize segment reactions from: Current C Previous	▼ C <u>R</u> e-init	
	Integration Information Number of Segments Minimum Step Fraction Minimum Step Length	20 1.0e-06 <empty></empty>	
	Catalyst <u>D</u> ata Void Fraction is specifi (no catalyst information	ied as 1.000 n is needed)	
Design_ Reacti	ons Rating Worksheet Perform	ance Dynamics	
Delete	Unknow	n Dimensions	Ignored

En la pestaña "Reactions" se selecciona el set ya gerenado:

En rating, las dimensiones:

nading	Tube Dimensions		
Sizina	Total Volume	0.770 m3	
, in the second s	Length	3.000 m	
	Diameter	0.5717 m	
	Number of Tubes	1	
	Wall Thickness	0.0050 m	
		,	

Finalmente en la pestaña "Design", en "Parameters" agregar que la caída de presión es 0 y verificar que sea adiabático (Duty=0) lo que se logra porque no se conectó ninguna corriente energética.

La barra de estatus se podrá en verde con la leyenda "OK" indicando que la operación fue resuelta y convergió adecuadamente:

Design	Pressure Drop Parameters	
Connections	Delta P 0.0000	
Parameters		
leat Transfer		
Jser Variables		
lotes		
	Single Phase	
	🖵 Single Phase 📍	
	🖵 Single Phase	
	Duty Parameters	
	Single Phase Duty Parameters • Heating C Cooling	
	Single Phase Duty Parameters Heating C Cooling Duty 0.0000	
	Single Phase Duty Parameters Heating Duty 0.0000 C Formula Duty Que	
	Single Phase Duty Parameters Heating Cooling Duty 0.0000 Formula Direct Q Value	

Finalmente en la pestaña "Performance" podremos visualizar los perfiles en forma tabular o gráfica para los principales resultados tales como flujos, composiciones, velocidad de reacción, etc.

Inditions 0.075 606.9 137.8 1.0000 0 16997 151.9 ws 0.225 606.9 137.8 1.0000 0 16997 151.9 0.375 606.9 137.8 1.0000 0 16997 151.9 0.375 606.9 137.8 1.0000 0 16997 151.9 0.375 606.9 137.8 1.0000 0 16997 151.9 0.525 606.9 137.8 1.0000 0 16997 151.9 0.675 606.9 137.8 1.0000 0 16997 151.9 0.825 606.9 137.8 1.0000 0 16997 151.9 0.975 606.9 137.8 1.0000 0 16997 151.9 1.125 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.575 606.9<	Performance	Length [m]	Temperature [C]	Pressure [kPa]	Vap Fraction	Duty [kJ/h]	Enthalpy [kJ/kgmole]	Entropy [kJ/kgmole-C]
ws 0.225 606.9 137.8 1.0000 0 16997 151.9 n Rates 0.375 606.9 137.8 1.0000 0 16997 151.9 nsport 0.675 606.9 137.8 1.0000 0 16997 151.9 mpositions 0.675 606.9 137.8 1.0000 0 16997 151.9 0.675 606.9 137.8 1.0000 0 16997 151.9 0.825 606.9 137.8 1.0000 0 16997 151.9 0.975 606.9 137.8 1.0000 0 16997 151.9 1.125 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.425 606.9 137.8 1.0000 0 16997 151.9 1.575 606.9 137.8 1.0000 16997 151.9 <t< td=""><td>onditions</td><td>0.075</td><td>606.9</td><td>137.8</td><td>1.0000</td><td>0</td><td>16997</td><td>151.9</td></t<>	onditions	0.075	606.9	137.8	1.0000	0	16997	151.9
n Rates 0.375 606.9 137.8 1.0000 0 16997 151.9 insport 0.525 606.9 137.8 1.0000 0 16997 151.9 insport 0.675 606.9 137.8 1.0000 0 16997 151.9 insport 0.675 606.9 137.8 1.0000 0 16997 151.9 0.675 606.9 137.8 1.0000 0 16997 151.9 0.825 606.9 137.8 1.0000 0 16997 151.9 0.975 606.9 137.8 1.0000 0 16997 151.9 1.125 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.425 606.9 137.8 1.0000 0 16997 151.9 1.725 606.9 137.8 1.0000 0 16997 151.9 <td>ows</td> <td>0.225</td> <td>606.9</td> <td>137.8</td> <td>1.0000</td> <td>0</td> <td>16997</td> <td>151.9</td>	ows	0.225	606.9	137.8	1.0000	0	16997	151.9
0.525 606.9 137.8 1.0000 0 16997 151.9 insport 0.675 606.9 137.8 1.0000 0 16997 151.9 mpositions 0.825 606.9 137.8 1.0000 0 16997 151.9 0.975 606.9 137.8 1.0000 0 16997 151.9 1.125 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.425 606.9 137.8 1.0000 0 16997 151.9 1.725 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875	n Pates	0.375	606.9	137.8	1.0000	0	16997	151.9
Impositions 0.675 606.9 137.8 1.0000 0 16997 151.9 mpositions 0.825 606.9 137.8 1.0000 0 16997 151.9 0.975 606.9 137.8 1.0000 0 16997 151.9 1.125 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.425 606.9 137.8 1.0000 0 16997 151.9 1.575 606.9 137.8 1.0000 0 16997 151.9 1.725 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875	innales	0.525	606.9	137.8	1.0000	0	16997	151.9
0.825 606.9 137.8 1.0000 0 16997 151.9 0.975 606.9 137.8 1.0000 0 16997 151.9 1.125 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.425 606.9 137.8 1.0000 0 16997 151.9 1.575 606.9 137.8 1.0000 0 16997 151.9 1.725 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9	insport	0.675	606.9	137.8	1.0000	0	16997	151.9
0.975 606.9 137.8 1.0000 0 16997 151.9 1.125 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.425 606.9 137.8 1.0000 0 16997 151.9 1.575 606.9 137.8 1.0000 0 16997 151.9 1.725 606.9 137.8 1.0000 0 16997 151.9 1.725 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9	mpositions	0.825	606.9	137.8	1.0000	0	16997	151.9
1.125 606.9 137.8 1.0000 0 16997 151.9 1.275 606.9 137.8 1.0000 0 16997 151.9 1.425 606.9 137.8 1.0000 0 16997 151.9 1.425 606.9 137.8 1.0000 0 16997 151.9 1.575 606.9 137.8 1.0000 0 16997 151.9 1.725 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9		0.975	606.9	137.8	1.0000	0	16997	151.9
1.275 606.9 137.8 1.0000 0 16997 151.9 1.425 606.9 137.8 1.0000 0 16997 151.9 1.575 606.9 137.8 1.0000 0 16997 151.9 1.575 606.9 137.8 1.0000 0 16997 151.9 1.725 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8		1.125	606.9	137.8	1.0000	0	16997	151.9
1.425 606.9 137.8 1.0000 0 16997 151.9 1.575 606.9 137.8 1.0000 0 16997 151.9 1.725 606.9 137.8 1.0000 0 16997 151.9 1.725 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 4 1000 16997 151.9 1000 16997 151.9		1.275	606.9	137.8	1.0000	0	16997	151.9
1.575 606.9 137.8 1.0000 0 16997 151.9 1.725 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9		1.425	606.9	137.8	1.0000	0	16997	151.9
1.725 606.9 137.8 1.0000 0 16997 151.9 1.875 606.9 137.8 1.0000 0 16997 151.9 ◀		1.575	606.9	137.8	1.0000	0	16997	151.9
1.875 606.9 137.8 1.0000 0 16997 151.9		1.725	606.9	137.8	1.0000	0	16997	151.9
		1.875	606.9	137.8	1.0000	0	16997	151.9
		•		107.0	4 0000			Plot

3.2 CSTR

Se llevará a cabo la reacción en fase vapor siguiente en un reactor CSTR adiabático.

Para ello se deberá repetir los pasos anteriores o usar el mismo caso. Agregar al pfd una nueva corriente material ("entrada-2") y clonar sus propiedades de la corriente "entrada".

Conectar dos corrientes a la salida (no agregar corriente energética)

CSTR-100		
Design	Name CSTR-100	
Connections Parameters User Variables Notes	Injets Vapour Outlet	
	Energy (Optional)	
Design Reaction	ns Rating Worksheet Dynamics	
Delete	Requires a Reaction Set	I Ignored

En "Design", "Parameters" en volumen, poner el mismo que el empleado en el caso anterior.

Design	
Connections	· · · · · · · · · · · · · · · · · · ·
Parameters	
User Variables	Delta P 0.0000 kPa Volume
Notes	0.7700 m3
	Liquid Level
	50.00 %
Design Read	ctions Rating Worksheet Dynamics

Se agrega el set de reacciones en la pestana "Reactions".

Reactions Reaction Information		
Details Reaction Set Global Rxn S	Reactio	n Rxn-1
tesults Specifics (* Stoichiome	etry C <u>B</u> asis	View Reaction
Stoichiometry		
Component	Mole Wt.	Stoich Coeff
E-Benzen	e 106.166	-1.000
Styren	e 104.152	1.000
Hydroge	n 2.016	1.000
**Add Comp	NB	
	Balance Error	0.00000
	Reaction Heat (25°C)	1.2e+05 kJ/kgmole
Design Reactions Rating Worksheet Dy	namics	1.28400 Korkgilois

Comparar este resultado con el obtenido en el pfr. Notar que no hay corriente liquida y que a pesar de todo Hysys sólo considera el 50% del volumen de gas, ya que en "Design", "Parameters" el valor de "Liquid level" dice 50%. Poner a cero y verificar si hay diferencia. Comparar nuevamente con el reactor flujo pistón.

3.3 REACTOR DE GIBBS

Nuevamente, se puede repetir los pasos del caso o emplear el mismo.

De la paleta agregar un reactor de Gibbs:

Clonar la corriente "entrada" en otra, "entrada-3" y conectarla a la entrada del reactor, luego agregarle las salidas materiales. Otra vez obviamos la corriente energética.

En "Design", "Parameters" usar el mismo volumen (0.770 m³), con nivel de líquido 0.

En la pestaña "Reactions", "Overall" verificar que esté seleccionada la opción "Gibbs Reactions Only". Si se eligiera "NO reactions (=Separator)" funcionaría sólo como un separador

de dos fases, mientras que si se seleccionara "Specify Equilibrium Reactions" se deberá previamente agregar una reacción de equilibrio.

wn.
100
+007

Una vez lograda la conversión comparar con los dos casos anteriores.

3.4 REACTORES DE EQUILIBRIO

Hay dos maneras de hacerlo. Una como se mencionó, eligiendo la opción "Specify Equilibrium Reactions" en reactores de Gibbs en la pestaña "Reactions", "Overall" (ver caso anterior) o bien agregando un reactor de equilibrio.

En todo caso debemos agregar un nuevo set de reacciones, esta vez de equilibrio:

Volvemos al medioambiente "Basis" haciendo clic en el ícono representado por un erlenmeyer. Una vez en el formulario "Simulation Basis manager" ir a la pestaña "Reactions" y agregar una nueva reacción:

Ixn Components	Reactions		Reaction Sets	
E-Benzene	Bxn-1	View R <u>x</u> n	Set-1	⊻iew Set…
Styrene Hydrogen		Add <u>B</u> xn	>	Add Set
		Delete Rxn		Delete Set
		Copy Rxn	Asses Fluid Place	Copy Set
			Basis-1	Import Set
				Export Set
Add Comps				Add to FP

Entre las opciones elgimos "Equilibrium":

	🕴 Reactions 🛛 🖃 🔀
	Conversion
1	Equilibrium
	Heterogeneous Catalytic Kinetic Simple Rate
	Add Reaction

Completar el formulario siguiente:

Component	Mole Weight	Stoich Coeff
E-Benzene	106.166	-1.000
Styrene	104.152	1.000
Hydrogen	2.016	1.000
Add Comp		
	Balance Error	0.00000
} <u>a</u> lance	Reaction Heat (25 C)	1.2e+05 kJ/kgmole

Vemos que una vez ingresada la estequeometría la reacción ya está "lista", esto se debe a que por defecto para el equilibrio adopta el modelo "Gibbs Free Energy" en la opción "Keq Source" de la pestaña "Basis".

1	Simulation Basis Ma	nacer				
	Rxn Components E-Benzene Styrene Hydrogen	Reactions Exm1 Rxm2	View Ryn Add <u>B</u> yn	- Reaction	Sets	View Set
reaction Set : me Set-2 et Info Set Type	Set-2 Equilibrium	Beady	X	Assoc. F Basis-1	kid Pkgs	Delete Set Copy Set Import Set Export Set
Active List Rxn-2 Kempty>	OK Inactive	List Oper-	ations Attached	>tions Compone	nt Maps UserPr	operty

Se agrega un nuevo set de reacciones químicas y se le asocia como activa a la recién

Nuevamente en "Simulation Basis manager", ir a la pestaña "Fluid Pkgs", oprimir el botón "View" seleccionar el set recién creado:

Set-2	< <u>A</u> dd Set	Set-1	Return to the Simulation
	Remove>		Basis Manager to Build Reactions or Reaction Sets.
Associated Reactions Ban-1	I .	Associated Reactions Rxn-2	

Volver al medio ambiente de trabajo y agregar una corriente material ("entrada-4") clonada de "entrada"

Para seleccionar un reactor de equilibrio lo elegimos de la paleta de objetos, en

Completar las corrientes de salida (sin corriente de energía: adiabático)

🖗 ERV-100				_ 🗆 🔀
Worksheet	Name	entrada-4	liguido-4	vapor-4
	Vapour	1.0000	<empty></empty>	<empty></empty>
Conditions	Temperature [K]	880.0	<empty></empty>	<empty></empty>
Properties	Pressure [atm]	1.360	<empty></empty>	<empty></empty>
Composition	Molar Flow [kgmole/h]	547.9	<empty></empty>	<empty></empty>
Composition	Mass Flow [kg/h]	5.817e+004	<empty></empty>	<empty></empty>
PF Specs	Std Ideal Liq Vol Flow [m3/h]	66.86	<empty></empty>	<empty></empty>
	Molar Enthalpy [kJ/kgmole]	1.611e+005	<empty></empty>	<empty></empty>
	Molar Entropy [kJ/kgmole-C]	245.3	<empty></empty>	<empty></empty>
	Heat Flow [kJ/s]	2.452e+004	<empty></empty>	<empty></empty>
Design Read	tions Rating Worksheet Dynam	a Reaction Set		Ignored

Una vez en la pestaña "Reactions" seleccionar el set-2 y el reactor podrá converger.

etails	Reaction Set: Set2	 Beaction: 	Bxn-2	
suits	📀 Stoichiometry 🔿 Basis	C Keq C App	roach View Rxn	
	Stoichiometry Igfo			
	Component	Mole W/t.	Stoich Coeff	
	E-Benzerv	e 106.166	-1.000	
	Styten	e 104.152	1.000	
	"Add Comp"	n 2.016	1.000	
	Ba	slance Error	0.00000	
	Re	eaction Heat (25 C)	1.2e+05 kJ/kgmole	

Comparar los resultados con los casos anteriores

Como actividad extra, ir al reactor de Gibbs y seleccionar la opción "Specify Equilibrium Reactions" de la pestaña "Reactions", "Overall" elegir set-2:

Reactions	Reactor Type	1
Overall Details	<u>G</u> ibbs Reactions Only <u>G</u> ibbs Reactions Only <u>Figure 1000000000000000000000000000000000000</u>	Use this option when the Stoichiometry is known (Alternative to Equilibrium Reactor)
	Solving Option Maximum Number of Iterations Tolerance	1.000000-007
	Equilibrium Reaction Sets <u>R</u> eaction Set Set-2	
Design React	tions Rating Worksheet Dynamics	

Ver el resultado logrado y comparar:

Se vio que al definir la reacción de equilibrio la constante era calculada según la energía libre de Gibbs, no obstante hay otras variantes con las que se puede ensayar:

asis hase	Activity VapourPhase	Keq Source
Min Temperature	0.0000 K	Gibbs Free Energy
Max Temperature	3273 K	C Fixed Keq
Basis Units	•	C Keq vs T Table
		Auto Detect
		1

3.5 REACTOR DE CONVERSIÓN

Lleve a cabo la reacción en fase vapor de deshidrogenación del etilbenceno en un reactor de conversión, donde la conversión del etilbenceno es del 80%.

Repitiendo los pasos del caso anterior ir al entorno "Basis", y una vez allí agregar una nueva reacción, esta vez de conversión:

4 Simulation Basis Man	ager				
Rxn Components E-Benzene Styrene Hydrogen	Reactions Hxn-1 Bxn-2	View Rgn Add <u>Rxn</u> Delete Rxn	Reaction gets Set-1 Set-2	View Set Add Set Delete Set	
Equilibrum Equilibrum Heterogeneous Catalytic Kinetic Simple Rate		Lopy hkg	Assoc. Fluid Pkgs Basis-1	Import Set Export Set Add to FP	
Add <u>R</u> eaction	HypotheticalsOil M	lanager Reactions	Component Maps U	serProperty	
			Ret <u>u</u> rn to Simu	lation Environment	

En estequeometría completar:

chiomeny into		200100200
Component	Mole Weight	Stoich Coeff
E-Benzene	106.166	-1.000
Styrene	104.152	1.000
Hydrogen	2.016	1.000
Add Comp		
0.1	Balance Error	0.00000
Balance	Reaction Heat (25 C)	1.2e+05 kJ/kgmole
oichiometry Basis	1	

<mark>En "Basis":</mark>

Base Component	E-Benzene
Fixn Phase	Uverall 80.00
C1 T	(empty)
C2	<empty></empty>
Conversion (%) = Co + C1*T + C	21^2

Nuevamente agregar un set con la reacción de conversión:

- Simulation B	asis Manager			
Ren Component E-Berutene Styrene Hydrogen	Reactions Ron1 Ron2 Ron3	View Rgn Add <u>B</u> xn	Reaction 2014 Sel-1 Sel-2 Sel-3 Sel-3	ev Sot.
Reaction Set: Set 3		Cons Run	Assoc. Fluid Plogs	py Set
Set Type Active List OK	Conversion Conversion	Operations Attached	Component Maps User Rope	to FP
View Active	View Inactive		Tregiti dissidite (1)	

Asociar con el paquete físico químico

Finalmente, en Simulation Basis manager", ir a la pestaña "Fluid Pkgs", oprimir el botón "View" seleccionar el set recién creado

Agrient Reaction Sets Set-1 Set-2 Set-3	Available Reaction Sets Set-1 Set-2 Set-3	Return to the Simulation
Associated Reactions	Associated Reactions Rise-3	Basis Manager to Build Reactions or Reaction Sets. Simulation Basis Mgr
Set 110 Deservators Rinner Co	offs Stablest Phase Order Runs I	stedar Notes

Ya se puede ir al medioambiente de trabajo y clonar otra corriente (entrada-5) con los datos de la corriente "entrada".

Agregar un reactor de conversión:

Acoplar la corriente a la entrada del reactor y completar:

Worksheet	Name	entrada-5	liquido-5	vapor-5
	Vapour	1.0000	<empty></empty>	(empty)
Conditions	Temperature [K]	880.0	<empty></empty>	<empty></empty>
Properties	Pressure [atm]	1,360	<empty></empty>	<empty></empty>
Composition	Molar Flow [kgmole/h]	547.9	<empty></empty>	<empty></empty>
Composition	Mass Flow [kg/h]	5.817e+004	<empty></empty>	<empty></empty>
PF Specs	Std Ideal Liq Vol Flow [m3/h]	66.86	<empty></empty>	<empty></empty>
	Molar Enthalpy [kJ/kgmole]	1.611e+005	<empty></empty>	<empty></empty>
	Molar Entropy [kJ/kgmole-C]	245.3	<empty></empty>	<empty></empty>
	Heat Flow [kJ/s]	2.452e+004	<empty></empty>	<empty></empty>
Design Rea	ctions Rating Worksheet Dunar	nics		

En la pestaña, "Reactions" agregar el set-3

Reactions	Conversion Reaction Details	10.50 m	1444 - 144 -
)etails	Reaction Set Set	▼ <u>R</u> eacti	on Rxn-3 💌
Results	Stoichiometry C Basis	○ Conversion %	View Reaction
	Stoichiometry Info		
	Component	Mole Wgt.	Stoich Coeff
	E-Benzene	106.166	-1.000
	Styrene	104.152	1.000
	"Add Comp"	2016	1.000
	Bal	ance Error	0.00000
	Rea	action Heat (25 C)	1.2e+05 kJ/kgmole
Davies Base	tinne Rating Marksheet D	unamina	

Una vez convergido comparar con los resultados anteriores:

3.6 DE VELOCIDAD SIMPLE

Cuya cinética responde a la ecuación: $r_A = -k_f \left(C_A^{\alpha} C_B^{\beta} - \frac{C_R^{\phi} C_S^{\gamma}}{K_{eq}} \right)$

Para ello se necesita la dependencia de la constante de equilibrio en función de la temperatura. En nuestro caso:

Iniciar un nuevo caso con los siguientes componentes:

Etilbenceno	(E-Benzene)
Estireno	(Styrene)
Hidrógeno	(Hydrogen)

Elegir Peng-Robinson, como paquete de estimación de propiedades.

En reacciones elegir "Simple Rate" y completar como sigue:

Benzene	Ban-1	View Ban	Global Rxn Set	View Set
lyrene ydroger	Reactions	Add Bxn		Add Set
20	Conversion Equilibrium	Delete Part		Delete Set
	Heterogeneous Catalytic Kinetic	Copy Rxn		Copy Set
	Dimple Hate	Simple Rate Rea	ction: Rxn-1	2
	Add Reartion	Stoichiometry and Ra	te Information	
	Add Reaction	Component	Mole Weight	Stoich Coelf
Add Co	mga	E-Benze	ne 106.166	-1.000
		Styre	104.152	1.000
omponer	nts Fluid Pk.gs Hypotheticals	0 "Add Com	en 2016	1.000
		Balance	Balance Error	0.00000
			[Heacoon Heat (25 C)]	1.2e+00 ka/kgmole
		Stoichiometry B	asis Parameters	

Basis	Partial Pres	
Base Component	E-Benzene	
Rxn Phase	VapourPhase	
Min Temperature	0.0000 K	
Max Temperature	3273 K	
Basis Units atn	•	
<u>B</u> ate Units	ole/L-s	

Para la reacción directa: E= 21874[cal/mol]; A= 20315 gmol/gcat s atm Para la reacción inversa:

A= -13.210961 B= -13122.000 C= 4.353830 D= -0.0032996 Con lo que el formulario queda:

Forward Reaction		Equation Help	
A U	2.0e+04	+ - K * (fill acia) - FIR acia) / K'3	
E	9.2e+04	$k = A^* \exp \{-E / RT \}^* T^B$ $\ln (K') = A' + B'/T + C' \ln(T) + D'*T$	
B	(empty>		
Beverse Reaction		T in Kelvin	
A'	-1.3e+01	1	
B'	-1.3e+04		
C	4.4e+00		
D' [-3.3e-03		
Children	mater Davis		
Stoichic	metry Basis	Parameters	

Agregar el set y asociar a la fisicoquímica. Luego agregar nuevamente el set ya asociado al paquete fisicoquímico como se hizo en los casos anteriores e ir al medio ambiente de trabajo.

Una vez allí crear una corriente de etilbenceno puro y completar:

Worksheet	Stream Name	Etilbencenc
Conditions Properties	Vapour / Phase Fraction	1.0000
	Temperature [K]	880.0
	Pressure (atm)	1.378
Composition	Molar Flow (gmole/s)	152.2
Composition	Mass Flow [kg/h]	5.817e+004
K Value	Std Ideal Liq Vol Flow (m3/h)	66.86
User Variables	Molar Enthalpy [kJ/kgmole]	1.611e+005
Makes	Molar Entropy [kJ/kgmole-C]	245.1
notes	Heat Flow [kJ/s]	2.452e+004
Cost Parameters	Liq Vol Flow @Std Cond [m3/h]	66.70
	Fluid Package	Basio-1
Worksheet	Atachments Dynamics	

Conectar a un PFR con temperatura de salida igual a la entrada (isotérmico) y que la caída de presión sea estimada por Ergun ("Design", "Parameters") con un volumen de 250 m3 y un largo de 7 m ("Rating", "Sizing"), agregándole el set de reacciones ("Reactions", "Overall")

En la pestaña "Reactions", "Results" ver el rendimiento de la reacción.

Copiar o repetir el flowsheet y agregarle una nueva corriente, esta de vapor de agua:

A 880 °K de temperatura, 1.378 atm de presión con un flujo de 1522 gmol/s y ver ahora el rendimiento de la reacción.

Utilizando el databook graficar el rendimiento de la reacción para un flujo de vapor desde 0 a 10000 gmol/s con saltos de 100 gmol/s. Ver cuando se produce el máximo rendimiento y de cuanto es.